

New technologies for the phase of recycling and dismantling: Detail on the specific processes followed at recycling center

Content HytechCycling Global scheme of current plant

S HyTechCyclins Global scheme of current plant

SEGREGATION AND WEIGHING

S HyTechCycling Global scheme of current plant

SEPARATION WORK TABLES

S HyTechCyclins Global scheme of current plant

SERIAL TREATMENT LINE

Global scheme of current plant HyTechCyclinz

N ARAGON

FRAGMENTATION AND SEGREGATION LINE

Global scheme of current plant

Super Chopper

Global scheme of current plant

Shredder

S HyTechCyclins Global scheme of current plant

FOUCAULT

Η

Global scheme of current plant

GRANULATORS

Global scheme of current plant

DENSIMETRY

energy

DEVOLOPMENT OF NEW

HYDROGEN TECHNOLOGIES IN ARAGON

PARK Parco Scientifico Tecnologico per l'Ambiente

12

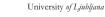
CHEMICAL PROCESS

			· · · ·		De server de stande size		Device Abbreviations	
Device	Component	Material	Critical aspect	Recovery technologies		SOFC	Solid Oxide Fuel Cell	
				Existing ^a	Novel ^b			
SOFC	Anode	YZS	Cost; supply risk	HDT	N/A		Polymer Electrolyte Membrane	
		Ni; NiO	Hazard	HDT; HMT	N/A	PEMFC	Fuel Cell	
	Cathode	LSM	Hazard; supply risk	N/A	N/A		Polymer Electrolyte Membrane	
	Electrolyte	YZS	Cost; supply risk	HDT	N/A	PEMWE	Water Electrolyser	
	Interconnects	Ni; NiO	Hazard	HDT; HMT	N/A			
		LSC	Hazard; supply risk	N/A	N/A	AWE	Alkaline Water Electrolyser	
PEMFC	Anode	Pt	Cost	HMT; PMT	SED; TD; AP	Recover	overy Abbreviations Alcohol Dissolution	
	Cathode	Pt	Cost	HMT; PMT	SED; TD; AP	– AD		
	Electrolyte	lonomer	Cost; hazard °	N/A	AD; AP	– AP	Acid Process	
PEMWE	Anode	lr; Ru	Cost; hazard	HMT; PMT	TD			
	Cathode	Pt	Cost	HMT; PMT	SED; TD; AP	HDT	Hydro Treatment	
	Electrolyte	lonomer	Cost; hazard °	N/A	AD; AP	HMT	Hydro Metallurgical Technology	
	Bipolar plates	Ti	Cost	HMT	N/A	PMT	Pyro Metallurgical Technology	
AWE	Anode	Ag	Cost	HMT	N/A		Selective Electrochemical	
	Cathode	Ni; NiO	Hazard	HDT; HMT	N/A	SED	Dissolution	
						TD	Transient Dissolution	

Table above summarizes the existing and novel recovery technologies applicable to critical materials of FCH stacks: the existing technologies for PEMFCs, PEMWEs, AWEs and SOFCs are focused mainly on hydrometallurgical and pyrometallurgical recovery of precious metals used in the stacks as catalysts for the conversion process.

HyTechCycling New technologies in recycling phase

CHEMICAL PROCESS


Existing ones

- hydrometallurgical,
- pyro-hydrometallurgical

Novel processes

- Alcohol dissolution (AD)
- Acid process (AP)
- Selective electromechanical dissolution (SED)
- Transient dissolution (TD)

O HyTechcyce New technologies implementation in current plants

Permissions and authorizations for new implementations (permissions differs from Country to Country)

- procedure which requires lot of time
- identification unified in all member states
- efficient and productive (how much can be recovered by a product)
- Knowledge of the process- Design Staff
- Civil Works and installation
- Insurance
- Operation Staff

Structure New technologies implementation in current plants

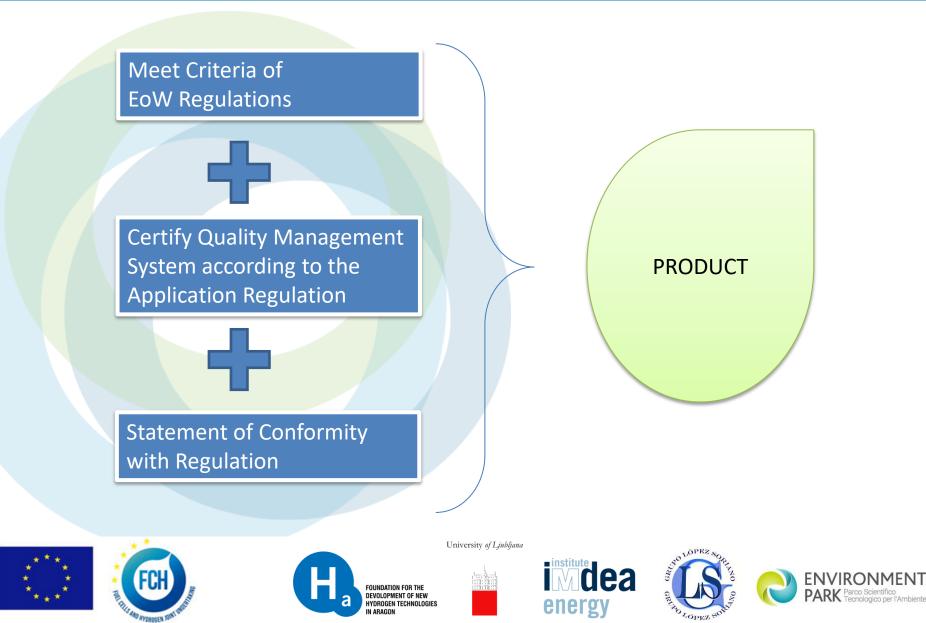
Economic and financial evaluation

- Investment costs sustain for the new installation
- Financing
- Revenues

MATERIAL OUTPUTS

Find opportunities to use recycled material

- Traditional output
- New AUTHORIZED ways
- End of Waste



END OF WASTE

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700190. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

